174 research outputs found

    A METHODOLOGY FOR DESIGN SPACE EXPLORATION OF REAL-TIME LOCATION SYSTEMS

    Get PDF
    Scope of Research. This paper deals with the problem of design space exploration for a particular class of networked embedded systems called Real-Time Location Systems (RTLS). Methods. The paper contains a clear and detailed plan of anongoing research and could be considered as a review, a vision and a statement of objectives. Analytical and formal methods, simulation and automated verification will be involved in the research. Main Results. Analysis of the state of the art (current design flow, existing simulation tools and verification techniques) has revealed several limitations for performing efficientdesign space exploration of RTLS, especially for safety-critical applications. The review part of the paper also contains a clear problem statement. The main outcome of this research is the proposed vision of a novel methodology for determining the best-suited technology and its configuration from the space of potential solutions. In particular, it is planned to extend an existing simulation framework and apply automated verification techniques. The latter will be used for checking simulation results and also for exploring different system configuration alternatives, that is, to optimize the design, which is a novel approach. A case study for validating the methodology is also proposed. Practical Significance. The proposed methodology will highly increase the breadth of design space exploration of RTLS as well as the confidence on taken design decisions. It will also contribute to optimizing the design

    A simple approach for describing metal-supported cyclohexaphenylene dehydrogenation: Hybrid classical/DFT metadynamics simulations

    Get PDF
    The mechanisms for the dehydrogenation reaction of cyclohexaphenylene at a copper surface are investigated with the help of density functional theory and metadynamics. Our results represent a showcase for an approach that describes the surface using many-body classical potentials and molecule-surface interactions with a van der Waals model. Starting from the experimental observation that dispersion-assisted mechanisms are at least as important as catalytic processes for the description of the reaction, we fully describe the former, we identify intermediate states and estimate the free energy barriers that characterize the reactio

    Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI

    Get PDF
    Over the past few years, several applications have been extensively exploiting the advantages of deep learning, in particular when using convolutional neural networks (CNNs). The intrinsic flexibility of such models makes them widely adopted in a variety of practical applications, from medical to industrial. In this latter scenario, however, using consumer Personal Computer (PC) hardware is not always suitable for the potential harsh conditions of the working environment and the strict timing that industrial applications typically have. Therefore, the design of custom FPGA (Field Programmable Gate Array) solutions for network inference is gaining massive attention from researchers and companies as well. In this paper, we propose a family of network architectures composed of three kinds of custom layers working with integer arithmetic with a customizable precision (down to just two bits). Such layers are designed to be effectively trained on classical GPUs (Graphics Processing Units) and then synthesized to FPGA hardware for real-time inference. The idea is to provide a trainable quantization layer, called Requantizer, acting both as a non-linear activation for neurons and a value rescaler to match the desired bit precision. This way, the training is not only quantization-aware, but also capable of estimating the optimal scaling coefficients to accommodate both the non-linear nature of the activations and the constraints imposed by the limited precision. In the experimental section, we test the performance of this kind of model while working both on classical PC hardware and a case-study implementation of a signal peak detection device running on a real FPGA. We employ TensorFlow Lite for training and comparison, and use Xilinx FPGAs and Vivado for synthesis and implementation. The results show an accuracy of the quantized networks close to the floating point version, without the need for representative data for calibration as in other approaches, and performance that is better than dedicated peak detection algorithms. The FPGA implementation is able to run in real time at a rate of four gigapixels per second with moderate hardware resources, while achieving a sustained efficiency of 0.5 TOPS/W (tera operations per second per watt), in line with custom integrated hardware accelerators

    String Method for the Study of Rare Events

    Full text link
    We present a new and efficient method for computing the transition pathways, free energy barriers, and transition rates in complex systems with relatively smooth energy landscapes. The method proceeds by evolving strings, i.e. smooth curves with intrinsic parametrization whose dynamics takes them to the most probable transition path between two metastable regions in the configuration space. Free energy barriers and transition rates can then be determined by standard umbrella sampling technique around the string. Applications to Lennard-Jones cluster rearrangement and thermally induced switching of a magnetic film are presented.Comment: 4 pages, 4 figure

    Two-Stage Rotational Disordering of a Molecular Crystal Surface: C60

    Get PDF
    We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60_{60} fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low temperature ordered (2Ă—2)(2 \times 2) state, and a high temperature (1Ă—1)(1 \times 1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces.Comment: 4 pages, 2 figure

    Feedback Loops Between Fields and Underlying Space Curvature: an Augmented Lagrangian Approach

    Get PDF
    We demonstrate a systematic implementation of coupling between a scalar field and the geometry of the space (curve, surface, etc.) which carries the field. This naturally gives rise to a feedback mechanism between the field and the geometry. We develop a systematic model for the feedback in a general form, inspired by a specific implementation in the context of molecular dynamics (the so-called Rahman-Parrinello molecular dynamics, or RP-MD). We use a generalized Lagrangian that allows for the coupling of the space's metric tensor (the first fundamental form) to the scalar field, and add terms motivated by RP-MD. We present two implementations of the scheme: one in which the metric is only time-dependent [which gives rise to ordinary differential equation (ODE) for its temporal evolution], and one with spatio-temporal dependence [wherein the metric's evolution is governed by a partial differential equation (PDE)]. Numerical results are reported for the (1+1)-dimensional model with a nonlinearity of the sine-Gordon type.Comment: 5 pages, 3 figures, Phys. Rev. E in pres

    Action-derived molecular dynamics in the study of rare events

    Full text link
    We present a practical method to generate classical trajectories with fixed initial and final boundary conditions. Our method is based on the minimization of a suitably defined discretized action. The method finds its most natural application in the study of rare events. Its capabilities are illustrated by non-trivial examples. The algorithm lends itself to straightforward parallelization, and when combined with molecular dynamics (MD) it promises to offer a powerful tool for the study of chemical reactions.Comment: 7 Pages, 4 Figures (3 in color), submitted to Phys. Rev. Let

    (Meta-)stable reconstructions of the diamond(111) surface: interplay between diamond- and graphite-like bonding

    Get PDF
    Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond (111) surface, based on the effective many-body Brenner potential, yield the (2Ă—1)(2\times1) Pandey reconstruction in agreement with \emph{ab-initio} calculations and predict the existence of new meta-stable states, very near in energy, with all surface atoms in three-fold graphite-like bonding. We believe that the long-standing debate on the structural and electronic properties of this surface could be solved by considering this type of carbon-specific configurations.Comment: 4 pages + 4 figures, Phys. Rev. B Rapid Comm., in press (15Apr00). For many additional details (animations, xyz files) see electronic supplement to this paper at http://www.sci.kun.nl/tvs/carbon/meta.htm

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627
    • …
    corecore